AD-R126 865 THE BOUNDED P-POINT CLASSES IN ROBUST HYPOTHESIS
TESTING AND FILTEI RING(U) NOORE 0 L OF ELECTRICRL
ENGINEERING PHILRD R ASSAN O

UNCLASSIFIED RAFOSR-TR-83-8286 RFOSR 82 002 F/G 12/4

ERRERENEEN:




T T A S NSG ke .'..‘."‘: T. . :f- o “-"T ' " .'.‘ "—" ST T e e B ’-
%
J
L
-
o
4
-
[y
A
Li
]
L
H
[
o
[
{
b
!
I O k28 jll2s
[ 1)
-
——— m o
——— E l3‘6 ;
g e 2
. LTy
=
|||||——— 2 e
— — —_—
MICROCOPY RESQLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
Y
!
{
i
¢
[}
LI S PN . . N

" EIRARY - . - . - . . . - . . - - . .
e e e e e e e e e - . . . . . T R e e it ]
LI WA ARSI I TR I, T s PRI W e e et e ————i—— U T Y B PO PPN VR AU SO RPN R AT S SR O




e o L ana s maniit smnchh s Segt e 1 v ') L4 0] - 14 K3t ) N v,V v .VTTVV r B - Dl -0 T - - ‘1
= MRS ENACRN ; o : ‘ .
. . UNCLASSIFIED
N ) SECURITY CLASSIFICATION OF THIS PAGE ' hen D'L‘LE"'""’):
~"-.._-' - RFPORT DOCUMENTATION PAGE BE FORE. C oD T R
. : 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
o - L a—
AFOSR-TR- 33-0206 n 426 F4S
4. TITL F rtand Snr_mﬂ-\ v 5. TYPE OF REPQRT & PERIOD COWERED

n THE BOUNDED p-POINT CLASSES IN ROBUST Interim
RS HYPOTHESIS TESTING AND FILTERING 6. PERFORMING ORG. REPORT NUMBER
: 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
S/ A. Kassam AFOSR 82-0022
9. PERFORMING ORGANIZATION NAME A.ND ADDRESS 10. PROGRAM ELEMENT, PROYECT, TASK
. . AREA & WORK UNIT NUMBERS
Dept. of Systems Engineering
University of Pennsylvania 61102F 2304/A5

Philadelphia, PA 19104

11, CONTROLULING OFFICE NAME AND ADDFESS 12. REPORT DATE
Air Force Office of Scientific Researct/{:&QJ October, 1982

Bolling AFB 13, NUMBER OF PAGES

WA 126869

Washington, DC 20332 9
V4. MONITORING AGENCY NAME & ADDRES. f different from Conltrolling Office) 15. SECURITY CLASS. (of this report;
UNCLASSIFIED
15a. DECLASSIFICATICN DOWNGRAGING
SCHEDULE

16. DISTRIBUTYION STATEMENT (of this Repc.1)

Approved for Public releasc; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstru-t entered in Block 20, if different {rom Report)

18. SUPPLEMENTARY NOTES

. 20th Annual Allertor Conf. on Comm., Control and Comp.
October, 198..

19. KEY WORDS (Continue on reverse gide if n. ~essary and identify by block number)

!
A

Piad

Robust Wiener Filters, RolLust Matched Filters, Robust Hypothesis Testing,
o Bounded Classes.

2\0. \ BSTRACT (Continue on reverse side I{ n: -ssary and i{denttly by block number)

"~ The bounded p-point clasc2s of density functions are defined through upper
and lower bounds on the power or probabilities on different sets in some parti-
tion of the frequency or sample space. The robust Wiener filter is derived for
such classes, and is shown tc be piecewise constant in its frequency response.
Similar results are indicated for hypothesis testing and matched filtering ia-
volving such classes of densities.

DD 1 52:“73 ]473 EDITION OF T NOV ¢ 1S OBSOLETE

Q.
'mﬂ

UNCLASSITIED

SECURITY CLASSIFICATION OF THIS PAGE /iWhen Date Entered)

B R L e -........—n-.—..—‘--, e ET e e o et o mgdew e - o
N ] M - .




AACIN O i S R '-_1_‘4.."\“\ ‘..‘

AFOSR-TR- 55-0206 /

’ " THE BOUNDED »-POINT CLASSES IN ROBUST HYPOTHESIS TESTING AND FILTERING*

v ~L- . S e Sah Seac i e 2 e e R AaCEPaU T St LB Pt R I A A

SALEEM A, KASSAM
Department of Systems Engineering
Moore School of Electrical Engineering
University of Pennsylvania
Philadelphia, PA. 19104

ABSTRACT

The bounded p-point classes of density functions are defined through
upper and lower bounds on the power or probabilities on different sets in
some partition of the frequency or sample space. The robust Wiener filter
is derived for signal and noise spectra lying in such classes, and is
shown to be piecewise constant in its frequency response. Similar results
are indicated for hypothesis testing involving such classes of probability
densities. The robust matched filter is also obtained for the bounded p-
point class of noise spectra, and is again shown to have a piecewise-
constant frequency response.

I. INTRODUCTION

In recent years a considerable number of results has been obtained on
minimax robust filters operating under conditions of inexact a_priori
knowledge of signal and noise characteristics. Specifically, filters for
estimation, smoothing, prediction, and interpolation of random signals
have been considered [e.g., 1-3], in addition to matched filters for
signal~to-noise ratio optimization [e.g., 4], and other filters for special
applications, e.g., time-delay estimation. In all these cases a priori
uncertainties on signal and noise characteristics are modeled by classes
of possible second-order characteristics, i.-., spectral densities or co-
variance functions. Many of these results were motivated by earlier work
on robust hypothesis testing [5], in which minimax robust tests for binary
hypotheses were obtained for some specific classes of probability density
functions. In particular, minimax robust solutions for robust Wiener fil-
tering under spectral uncertainty classes and for robust hypothesis testing
under corresponding probability density function classes are very closely
related.

Although some rather general results are available on robust hypothesis
testing and robust Wiener filtering under general uncertainty classes, sol-
utions for useful specific classes are of particular interest in applications.
The spectral and probability density models for which specific solutions
have been obtained include the following: 1) the e-contaminated model [5];

2) the "band-model" for bounded densities [6]; 3) the bounded total-var-
iation model [5]; and 4) the specified p-point model [7].

Of these, perhaps of primary importance in applications are classes
generated by the '"band-models" and the specified p-point models. 1In the
band~-classes density functions are assumed to lie between upper and lower
bounding functions, and in the specified p-point classes density functions
are assumed to have specified proportions of their total area in specified
regions in the sample-space or frequency domain. A natural and useful
synthesis of these two types of classes yields the bounded p-point class
of densities, where density functions are assumed to have proportions of
their total area in specified regions lying between specified upper and
lower bounds. It is easily seen that the bounded p-point classes include as

*This research is supported by the Air Force Office of Scientific Research
under Grant AFOSR 82-0022.
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a limiting case the band-classes, and as a special case the specified p-
point classes.

We obtain the structure of robust Wiener filters for signal and noise
spectra in bounded p-point classes defined by a common partition of the
frequency space, by using general results on robust hypothesis testing for
bounded classes [6]. The problem is first converted to cne involving dis-
crete spectra, and then results on robust hypothesis testing for discrete
probability distributions are used. The robust Wiener filter has a piece-
wise constant frequency response. In a similar way it can be shown that
robust -hypothesis testing for bounded p-point classes of density functions
requires the use of a quantizer operating on input data. For Wiener fil-
tering we also obtain a result for the worst-case performance of any filter
when signal and noise spectra lie in bounded p-point classes or the bounded
classes of the "band”" model. The above results are obtained for signal and
noise classes defined on the same partition of the sample or frequency space.
We also show that a solution can be obtained when one of the densities is in
the bounded class generated by the band-model.

For matched filtering under noise spectral density uncertainty, we
also consider the bounded p-point class for the noise spectra. For known
signal the solution is simple. When the signal is also uncertain, lying in
the previously used bounded Lj-deviation class (4], we can also obtain a
general solution. The interesting result here is that the robust matched
filter frequency response is again a piecewise-constant function.

II. ROBUST HYPOTHESIS TESTING AND WIENER FILTERING

We start by seeking a solution for the robust Wiener filter when signal
and noise power spectral densities (PSD's) are members of bounded p-point
classes. This will involve the robust binary hypothesis test for discrete
"band" classes of probability densities. We define the bounded p-point class
S of allowable signal PSD's S by

m
S = {s: f, S(f)df = 0§ L, i =1,2,0om ) o§ = ¢} (1a)
3 j=1

Here {Aj}jzl is a given partition of the frequency space (with f ¢ Aj >
-f € Aj)’ and 0 is the known total signal power, with the fractional powers
02 satisfying

J 2 2 <

2
< > i =
OLj Oj oUj s 1,2,...m (1b)

where the bounds 0?1 , G%H are known. In a similar way we define the class

N of allowable noise PSD's N by

2 T o2 2
N = {N: £, N(F)df = v5, j = 1,2,...m, } Vi =V} 2a)
A J j=1 J
h|
and
2 ¢ 2c<¢ 2
\Y - V - ) 'Y = 1,2,.0. Zb
L] j \Uj k| m o (2b)

Note that we are assuming here a common partition {Aj}j=1 for both signal

and noise classes.

We now consider a reduced discrete spectral distribution problem. Let
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j‘ ; . all signal, noise power in each subset A, be concentrated at a single fre-
=0 quency pair *f, € A,. We will denote byJ S, Nd the resulting classes of
. one~-sided powaé speétral concentrations der?ved from §, N, respectively.

- Let H be the frequency response of any filter used for estimating the sig-
nal component with power spectrum Sd = {S (1), S,(2),...5,(m)] in Sd’
observed in additive uncorrelated noise with power spectrum N, - N ..~ Let
Hd(j) = H(f,), j =1, 2,...,m. Then the mean-squared-error ?mse)d
ed(Sde;Hd) in estimating the signal for this discrete PSD's case is

m .
e (SN yiHy) =j§lsd<j>ll-ud<j>l2 FN DWW )

For given S,, N, this is minimized for Hd(j) = Sd(j)/[Sd(j)+Nd(j)] and the
corresponding minimum mse is

* m
e (S ,N,) =j£lsd(j>wd(j)/[sd<j)+xd(j>1 (4)

N o
X %

To obtain the least favorable pair (Sd,N ), which is defined to be the
pair maximizing (4), we examine the corresponging hypothasis testing pro-
blem for discrete densities. Consider a random variable with a finite set
of possible realizations {1,2,...,m}, with a probability mass function given
by either {P (j)}@_l or {Pl(j)}w_l. We assume that Py and P, are in the
bounded classes ddfined by 1= .

P

o = By 1 By () TRy S Py (3) 5 i = 1h...,m) (5a)

IN

Py

{Pl 2 Py, (3) = Py () = Pip(3) » 3= 1,2,..m} (5b)
Now the pair of densities (PS, PQ) in these classes which is least-favorable
(risk) in testing Pp vs. P. [6] can be found by applying the general result
in [6] for "band" classes of bounded probability density functions. The
results in [6] are applicable for both absolutely continuous and discrete
probability distributions. Note that the definition of the pair (P6,Pi)
which is leasgt-favorable (risk) implies that a corresponding optimum test
for P! vs. P* is robust for testing P, vs. P].Oq the other hand, the pre-
vious defini%ion of the 1east—favorab€e pair (Sé,ﬁ“) daes not automaticallw
imply robustness of the corresponding optimal filter, although tor our case
this will be shown to be true. In order to solve for the least-favorable
pair (S&,N”) from the results in [6] applied to discrete probability dis-
tributions, we use the following lemma which is a direct counterpart of

Lemma 1 in [2] where it is statcd for the absolutely continuous case:

Lemma 1 Let P, and P, be classes of discrete probability mass functions

P = 1P(j)}?=1 such t%at each member of POUP1 has positive values on the
'3

common set {1,2,...m}. If P, and P, are least-favorable (risk) for Py vs. P
then !
m ¢ ¢ ¥ > m
) ki’[Pl’(j)/l’o(.‘!)]1’0(_‘1) = L YR (/PGNP (6)
i=1 j=1

for all PU £ PO, P1 £ Pl and all continuous concave functions 7,
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The proof of this lemma follows the same ideas as those used in the
proof of lemma 1 in [2]. Although this lemma can be extended to apply to
the slightly more general case, we will instead restrict our original classes
of spectral densities by requiring that the lower bounds 02, and v2, be
positive (except in the case where both o% and V2, are zerg). Nowlwe trans-
form the original classes S, and Ny into ciasses gg and P_ of probability mass
functions P_ and P respectgvely by scaling each member of Sq by 1/0“ and
scaling each membef of N by 1/v4. Thus, the P ¢ P_  are defined by
P (j) = S.(§)/0”, j=1,2,...,m. Let (P* PL) be the léast-favorable (risk)

s d . . S .

pair in Ps % Pn' Now e¥ of (4) can be written as

m
eq® ) = AP LA (7)
=le?L(w? P

where L(j) = Ps(j)/P (j). The function x/(0%x+v°) is a concave function of
X, and lemma l gives the result that S% = szé and N% = v“P% form the least
favorable pair maximizing (4) over the classes Sd an Nd.

Once the least favorable pair (SQ,NQ) has been characterized, it re-
mains to be shown that the optimum fifteg for this signal, noise spectra
is the robust filter minimizing the maximum mse over the classes S, and N,.
This result is also a direct counterpart of Theorem 1 in (2] for tge con-
tinuous case, and may be stated as follows:

Lemma 2 Let S,, N, be convex classes of power spectral concentrations on a

finite number of frequencies. Then (SQ,N%) €35, % NQ is least-favorable

for Wiener filtering iff (SQ,NQ) and H d_ SL/?S£+N ) form a saddlepoint
s d’ . d d,R d d "d
for the mse functional e, (S,,N,;H.).
d*"d’d’d
Proof It is clear that if a pair (Si,NQ) and its optimal filter H form

a saddlepoint for mse, then the pair is least-favorable. To prove’the con-

verse we note, as in the proof in [2], that the functional e*(s,,N ) is
concave in S.,and in N.,, and that S,, N are assumed to be convex. From
this the proof proceegs in a manner similar to that in {2], except that now
we use the mse expressions (3) and (4) in place of the error expressions for
the continuous case.

We thus find that the saddlepoint robust filter for the bounded classes §,,
N, of discrete spectra can be found as the optimal filter for the least-
favorable pair in S, x N,. This least favorable pair is obtainable as a
scaled version of the least-favorable (risk) pair for testing the hypo-
thesis P_ vs. P where P_ and P_ are derived by scaling members of S, and Nd
respectively. We now finally ogtain the saddlepoint robust filter HR for
the original bounded p-point spectral classes S and N.

Lemma 3 If H is the saddlepoint robust filter for the classes S4q,N; of

discrete specgfg derived from the bounded p-point classes S,N defined by

(1) and (2), then the filter defined by

H(F) = By (1), £ Ay (8)

is the saddlepoint robust filter for spectral classes § and N

Proof We have, for S € Sand N ¢ N,

e(S,N; 1) = [8(E) [1-H (£) | + N(f)mR(f);zdf (9)
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wheie SL, NL is any PSD's in S,N respectively for which S~(f)/N‘(t)
= Sd(j)/Ng(j) when f ¢ Aj' Note that such a pair is least-favorable.

What we have obtained is an explicit solution for the piecewise-constant
robust Wiener filter for bounded p-point classes of signal and noise
spectra. In a similar way, we can obtain a corresponding result for ro-
bust hypothesis testing for bounded p-point classes of probability density
functions.

Returning to the Wiener filtering problem, let S be a bounded p~point
class of signal spectra, defined with respect to some partition %A.;m=l. Let
N be any class of noise spectra, and let N be the classmpf bounddd p-
point spectra generated by N, for the same partition {A,;j=1. We then con-
sider the least-favorable pairs (Sz;ﬁ ) for these classés S and N of signal
and noise spectra. If a least-favorable pair exists with N ¢ N, then
that pair is also least favorable for the original ¢lasses Sand N . We can
apply this observation to the case where the class N is a "band" class of
bounded spectra as in [1]. From the proof of lemma 3 we note that S*,N
are required to be constant multiples of each other, their exact shapes not
being coq3§rained. Therefore it _is always ggzsible to find a least-favorable
pair (S%,N7) for classes S and N such that N~ is in the band class V. This
implies that the more precise bounds on noise spectra defining N represents
extra information, beyond bounds on fractional powers, which is not useful
in obtaining a better robust filter. Note that in the above, the roles of
S and N can be interchanged and similar statements can be made. For hypo-
thesis testing, again similar conclusions can be drawn.

Before considering matched filters in the next section, we establish
a result which allows computation of the worst-case performance of any fil-
ter for signal and noise spectra defined either by "band" models or the
bounded p-point classes.

In general, for given signal and noise classes it is of interest to
have the worst-case performance of any given filter H. Consider the power-
constrained band classes of spectra for Wiener filtering. Note that the
mse obtained with any filter frequency response H is given by

e(S,N;H) = MNCE) |H(E) | 2aE + SSCE) |1-u(E) | 2at
Consider any integral of the form I = /X(f)P(f)df where P(f) is given and

X{(f) lies in a power constrained '"band" class of power spectra. Then the
worst (maximum) value of I is obtained with X ia the "band" class defined by

od
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X (£), P(f) <k
X, (£) = XU(f), P(f) > k
arbitrary, P(f) =k (10)

where k is a constant chosen to satisfy the power constraint. The proof
follows easily by considering [[X(f)-X (f)]P(f)df for any other X. This
result can be applied to each of the two terms in the above error expression
to obtain the worst case signal and noise spectra in the "band" class for
any given filter. A direct extension gives the worst-case spectra for the
bounded p-point classes.

III. BOUNDED p-POINT NOISE CLASS IN ROBUST MATCHED FILTERING

For noise characteristics described in the frequency domain, the fre-
quency response of the robust matched filter was derived explicitly in [4]
for noise spectral uncertainty modeled by the "band' classes of allowable
spectra. The signals were required to be within a given L, distance of a
nominal signal. Here we will obtain results for the case where the noise
class is the bounded p-point class described by (2). 1If S is the Fourier
transform of the real deterministic signal and S is the nominal charac-
teristic, the signal class S is uow defined by

S = {s: fyls(e) - s (£)|%af € 6 (11)

Here Q is (-»,») for the continuous case or [-0'5, 0°5) for the discrete
case. The signal-to-noise ratio obtained when using a filter frequency re-
sponse H, when S and N are the given characteristics, is given bv

L /S(E)YH(E)df |2

SNR(S,N;H) = 5
MNCE)|H(E) | “de

(12)

where integrals are over ©%i. The following theorem gives our general result
defining the least-favorable pair (S ,N ), which together with the corres-
ponding optimum filter HR forms a sagdlep01nt for the SNR functional.

Theorem 1 For the bounded p-ooint noise class of (2) and the bounded L, -
deviation signal class of (11),the pair (S,,N_ ) defined below is least-
favorable for matched filtering and the optimum filter H, for (S_,N_) is a
saddlepoint robust (matched) filter, provided non-negatiVe constants k and
c exist satisfying (17) and (18). The pair (SR,NR) is defined by

[1s (£)] - k,c1el®™85:¢D) s (£y1x ke (13)
Rj
0 , otherwise

and

Ngy(£) = Ist(f;l/k . (14)
for j=1,2,...,m, where S i j are the restrictions of SR’ NR to the sets
A,, respectively. Here kj are“defined as functions of S R’ k and c
tﬁrough the equations

2
R ™ fAJISRj(f)Idf’ (15)

o]
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and
2 2 2 2
oRj/vUj . ORj > k\Uj
- 2 2 2 < 2
kj ORj/vLj . ORj kvLj (16)
k 2 2 5 2
» k\)bj < URj kJUj
with the constraints
m
3 aé./kj =2 (17)
j=1
and
S22 2
Y \ _
£ {e™k /g af + fAJ_Rj.so(f)l df} = 5, (18)

1 J

the set R,, j =1,2,...,m, being defined as that subset of A, on which

h|
]So(f)|>k,c. In 514) for N_.(f) we set NR.(f) to be any function integrating
to v&, onJA, if o, = 0. Tﬁé robust filtetd is
Lj h| Rj
k,exp(-iargs (f)), f € R,
y xp(-iarg o(£)) i (19)
Ho(E) ={
S f » f eA,-R,.
o ¢ )/ c 7Ry

Comments Note that (17 and (18 are the constraints on total noise power
and on maximum deviation from the nominal signal for signals in S, respect-
ively. The solution for S_ and N, in any specific case requires a numerical
procedure for evaluating t§e cons%ants. In principle, this procedure can be
an iterative procedure starting fgom some guess for and ¢. For given k
and ¢ a solution for the X, and Ogscan be sought from @5) and 062. Then
the constraints (37) and (fb) are tested. A proof is given in the Appendix.

It is also intersting to note that as the partition {A'}T=l becomes
finer the solution approaches that for the "band" class fordndin f4}. In
the special case where only a noise power constraint is given (j=1) the ro-

bust filter = S*/N_ =% exp(-iargS (f)) on R, has a constant magnitude.
R''R 3 o ]

From (13) and (14), the optimum filter for S_, N_ is not uniquely de-
fined where |S |<k.c. On this set the robust filter is simnly
Sg(f)/c. i.e.,%a fllter matched to S, for white noise.

IV. ROBUST TIME-DELAY ESTIMATION

In a recent paper [8], the specified p-point classes and the band classes

of bounded spectral densities have been used in obtaining robust versions of
the Eckart filter [8], which is a specific type of weighting function used in
the computation of the cross-correlation function in time-delay estimation.
The basic problem is to estimate the time delay D between noisy signals re-
ceived at two sensors, the sensor inputs being described by v, (t) = s(t)
+ n (t) and v, (t) = s(t-D) + n_(t). Here s(t) is a stationary random signal
witﬁ spectrum” § and n, and n, are uncorrelated noise processes independent
of s, with spectra N, and N,, respectively. The technique of time-delay es-
timation considered }n [8] %s based on forming an estimate of the cross-
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spectral density G 2(f) of the inputs v, and Vo weighting this with a fil-
ter function W, an& then taking the inverse transform to obtain an estimate
of the cross-correlation function R1 (t). The position of the peak in R 2( )
is taken as an estimate of the time gelay D. For low signal-to-noise ra%lo
at the input one appropriate performance measure is the output SNR of the
estimate of RlZ(D)' This is given by

LM(E)S(£)df]?

N d(s,Q;W) = > (20)

. JSWE(E)Q(E)df

-

o where Q(f) = N (f)Nz(f). The spectral product Q and the signal spectrum can

B both be estima%ed ffom measurements at the system output. For given S and
Q the optimum (Eckart) filterzmaximizing d(s,Q;W) is WO = $/Q, and this max-

5 imum distance is dO(S,Q) = [§°/Q df.

The results in [8] show that for convex classes of rllowable S and Q,
the least-favorable pair (SR, Q) for (S,Q), minimizing dO(S,Q), and the
corresponding optimum filter W_ = S_/Q_ form asaddle point for d(S,Q;W).
Thus, the saddlepoint robust filter can be determined once the least fagor-
able pair (8 ’QR) is known. Now since d _(S,Q) can be written as . (5/Q)"Qdf,
lemma 1 can ge used to obtain directly the least favorable pair from the
) corresponding hypothesis testing problem. For S and Q lying in power con-
. strained bounded p-point classes the least favorable pair is exactly the

T same as for Wiener filtering in Section II, where Q plays the role of a
b nolse spectrum, ’

.- V. CONCLUSION

b~ We have considered robust hypothesis testing and robust random signal

. estimation, deterministic signal detection and time-delay estimation, for
cases where probability and spectral density functions belong to power-
constrained bounded p-point classes. These classes are of practical in-
terest because the bouncs can be readily estimated in many situations. They
form a generalization of the specified p-point classes and also of band-
classes, which can be viewed as limiting case: of the bounded p-point classes.
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APPENDIX:Proof of Theorem in Section III.

2
Consider the denominator D(N;H) = fN|H| df in (12), We have

is_(£)]° _
D(N;H) - D(N3H) = Zf[k?Rj(f) + =2 R ()] (N-Np)dE, (AL
3 c
where R, (f) = 1 for f ¢ Rj and 0 otherwise, and where R, = A.—Rj. Now on
R, N_ i3 0 and |S_|?/c? <kZ, so ] J
3 R o -3
. -— . 2 —
D(N;Ho)-D(NpsH) < 2 K f[AJ(f)N Rj(f)NR]df
2
< f-v
_k2>kk [/a(E)NAE-VE, ]
J
+ 7 K2a (ENAE-VZ ] + T KZ[JA, (£)NAE-02 /K] (A2)
K<k 3 R A A R
j j

The RHS of (A2) is O, so D(N;HR) < D(NR;HR) for all N ¢ N.

For the numerator, we first show that fSHRdf > 0, all S £ 8, This
follows by noting that, as in (Al),

Hp () = g[ijj(f) + ﬁg(f)lSo(f)[/c]exp(—iargso(f)),

replacing S by S+ (S-S ). The integral containing S only is independent
of S and is lowe? bounded by ¢ /c, from (18). The secOnd integral [integrand
containing (S-S )] is real-valued and, from Schwarz's inequality, bounded

by ¢ /c in absofute value. Thus we consider minimization of this integral
which is

- . + _— - _ -

J[%ijj(f) Rj(f)lsol/c]|s Solcos[arg(S So) argSo]df

To minimize the cos term is -1, when arg (S-S ) and arg S_have a difference
of m. Without the cos term, the integral is maximized for $ given by (13),

from a direct application of Schwarz's inequality and the above observation

on phase.
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